

Novel Starch-based Polymer for Aqueous Film Coating

Ashish A. Joshi, Ph.D.

ROQUETTE America Inc.

Presentation Outline

Introduction

Types of coatings Why Film Coating? Basic Formulation

Starch in Film Coating

Structure – Solubility & Retrogradation Film forming ability

Innovative Starch-based Coating Polymer

Ease of dispersion & low viscosity Mechanical / thermal properties of films Quicker coating at lower temperature Excellent stability and appearance Regulatory Aspects

Summary

Focus on Aqueous Non-functional Film Coating

Why Coat Solid Dosage Forms ?

Improved patient compliance

- Mask taste and odor
- Improve aesthetic appeal
- Facilitate swallowing

Stability

- Protect from light, moisture, oxidation
- ✓ Improve packaging efficiency
- ✓ Addition of a second API in case of incompatibility

Why Coat Solid Dosage Forms ?

Safety

- Easy recognition
- Prevention of cross contamination

Brand identity

Basic Film Coating Formulation

POLYMERS

Cellulosics HPMC, HPC, HEC, MC

Vinyls PVP, PVA

Acrylics Methacrylic acid derivatives

PLASTICIZERS

Polyols

Propylene Glycol, Glycerol, PEG

Organic esters Citrates, Phthalates

Oils/Glycerides Castor oil, Glyceryl monostearate

COLORANTS

Dyes Lakes

OTHER FILLERS

Lactose Polyols Stearic acid Tween MCC

Starch For Film Coating?

Monomer : Dextrose or α D-Glucose

Between 2 and 100 μm

Each strand is a large polymeric molecule containing thousands of monomers

SEM Potato starch granule 10 - 100 µm

SEM Wheat starch granule 2 - 45 µm

SEM Corn starch granule 2 - 32 µm

Starch granules - Ball of string made up of many strands

STARCH: Amylose & Amylopectin

Ratio of amylose to amylopectin varies depending on natural origin of starch

STARCH: Solubility & Retrogradation

Gelatinization: Chemical/mechanical processing to disrupt all or part of the starch granules

Gelatinization

Intermolecular bonds break at high temp

H-bonding sites engage more water

Increased randomness in structure

Retrogradation

Increased H-bonding during cooling Water forced out of gel and starch insolubilized Increased retrogradation with High Amylose starches High Amylopectin reduces retrogradation

AMYLOSE

Retrogradation results in gel formation due to H-bonding (time and temperature dependent)

Hot

AMYLOPECTIN

No retogradation or gelation

STARCH: Film Forming Ability

Amylose & Amylopectin Content Variation

	% Amylose	% Amylopectin
Standard maize	24.0	76.0
Waxy maize	0.8	99.2
High amylose maize	70.0	30.0
Potato	20.0	80.0
Rice	18.5	81.5
Таріоса	16.7	83.3
Peas	40.0	60.0
Wheat	25.0	75.0

AMYLOSE

- Confers film forming properties
- Causes starch retrogradation/gelation
- Amylose rich starches difficult to pregelatinize

Optimal Amylose: Amylopectin levels essential for stable film-formation

AMYLOPECTIN

- Reduces Retrogradation

The Ideal Starch for Film Coating

- -Instant solubility / dispersibility in cold water
- -Absence of Retrogradation
 - Enabled by chemical modification for stabilization
- -Excellent stability & film forming properties

- Source providing the best Amylose/Amylopectin ratio

LYCOAT[®] Innovative Aqueous Film Coating Polymer

- Instant solubilization/dispersion at room temperature
- Excellent Solution Stability
- Low Viscosity even at High Solids content
- High film adhesion and mechanical resistance
- Quality and regulatory aspects (Pharma, Nutra)

 Pregelatinized (water soluble)
 Fluidified (Low soln viscosity)
 Modified (hydroxypropyl)
 Agglomerated (dispersibility)
 Pea starch (amylose:amylopectin)

 Image: Comparison of the solution of the s

LYCOAT[®] in Film Coating

Dispersion Preparation at its Simplest

No Lumping or Foam generation

Taste Panel (n=15)	HPMC	LYCOAT®
Odor preference	20%	80%
Taste preference	14%	86%

Low Viscosity at High Polymer Content

ROQUETTE

Films: Mechanical & Thermal Properties

Films prepared by casting aqueous polymer (LYCOAT® or HPMC) solutions (10% solid content) 4x10cm pieces of film were cut and dried for 24 hours at 50% RH before evaluation

Mechanical Properties by Instron 4502				
Film Parameters HPMC LYCOAT®				
Young's Modulus	4920 ± 700	4040 ± 400		
Elongation (mm)	1.50 ± 0.5	2.00 ± 0.8		
Breaking Force (N) 76 ± 19 70 ± 17				
Thickness (mm) 0.058 0.062				

Comparable mechanical properties vs. HPMC

Higher elongation with LYCOAT[®] allows better flexibility and resistance to deformation and stress

Thermal Propert	DSC			
	DSC Endothermic Transitions			
Films Evaluated	Onset (°C)	Peak (°C)	∆H (J/g)	Tg (°C)
НРМС	43.6	51.8	1.1	91.7
LYCOAT [®]	39.0	51.7	0.6	69.8

Low Tg of LYCOAT[®] enables film formation at lower temperatures

Coating Formulations Used

Core Tablet Form	ulation	Ingredients
PEARLITOL® 200SD	95.5%	Polymer
GLYCOLYS®	3.0%	GMS
Mg stearate	1.5%	PEG 400
Tablet Shape	Biconvex	Tween 80
Tablet Diameter	10 mm	Tio
Tablet weight (unco	ated) 330 mg	
Tablet Hardness	85N	Lake color
(uncoated)		Water
Tablet loading	5 kg	Total
		Solids level

Ingredients	LYCOAT®	HPMC
Polymer	136.5g	62.6g
GMS	12.5g	-
PEG 400	-	5.5g
Tween 80	1g	-
TiO ₂	48g	21g
Lake color	2g	0.9g
Water	800g	910g
Total	1000g	1000g
Solids level	20%	9%
Viscosity	140 mPa.s	150 mPa.s

Polymers dissolved in water at room temperature using a magnetic stirrer

GMS emulsified by melting in water and Tween 80 using a magnetic stirrer until it cooled to RT

Pigments / lakes, titanium dioxide dispersed in water using high shear mixer and added to above mix

Coating Parameters Used

FC 19 coating machine (NR Industries), Fully perforated pan, Binks 460 spray gun (040'nozzle diameter)

Reduced coating time at low bed temp enables significant cost savings If required, LYCOAT[®] can be used for coating over a wide temp range

LYCOAT[®] - Reduced Nozzle Bearding

HPMC after 30 min run

LYCOAT[®] after 30 min run

Lower solution viscosity of LYCOAT® reduces nozzle bearding

- Reduction in the coating time
- Reduced cleaning time
- Higher throughput

LYCOAT[®] - Barrier Properties

Smooth coated tablet surface

No pin-holes or cracks

Enables excellent barrier properties

Equivalent moisture barrier properties

Excellent stability after 3 months at 20°C / 33-85% RH

Moisture Stability at 40°C & 75% RH Tablets coated with formulated HPMC or LYCOAT®

Blister packaging (Alu/PVC)

Excellent Film Adhesion

Film Parameters	НРМС	LYCOAT®
Young's Modulus	4920 ± 700	4040 ± 400
Elongation (mm)	1.50 ± 0.5	2.00 ± 0.8
Breaking Force (N)	76 ± 19	70 ± 17
Thickness (mm)	0.058	0.062

Films cannot be peeled off from coated tablets, implying strong adhesion

Evaluation of Tablet Appearance

Surface Gloss and Absence of logo-bridging with LYCOAT®

Tablets exhibit an attractive finish with uniform color and smooth surface LYCOAT[®] coated tablets appear glossier than HPMC coated tablets At 3% weight gain, no infilling or bridging of logos was observed

Low Friability & Fast Disintegration

Disintegration is NOT affected over a wide pH range (non-functional coating) No difference in friability of LYCOAT[®] vs. HPMC coated tablets Tablet appearance remains unchanged (no chipping)

LYCOAT[®] Coated Tablet Disintegration Influence of Pigment loading

Coating formulation composition					
	Pigment loading				
	25 % 40 % 50 °				
Lycoat [®] RS 780	136.5 g	136.5 g	136.5 g		
Glyceryl monostearate	12.5 g	12.5 g	12.5 g		
Tween 80	1g 1g 1g				
Titanium dioxide	48 g	96 g	144 g		
Lake	2 g	4 g	6 g		
Water	800 g	800 g	800 g		
Total	1000 g	1050 g	1100 g		

LYCOAT[®] Coated Tablet Disintegration Influence of Pigment loading

Hydrophobic pigments have negligible influence on coated tablet disintegration LYCOAT[®] offers high flexibility to process as well as formulation parameters

LYCOAT[®] Regulatory Status

	EP	USP	JP
Product			
Pea starch	ok1	-	-
Modified starch	Draft 2,3	ok 3	-
Pregelatinized modified starch	-	ok 3	-

 ¹ Already published in Pharmeuropa (January 2007) Final monograph due in June 2008 (Addendum 6.3 of EP)
 ² Under discussion at the European Pharmacopoeia
 ³ LYCOAT[®] fulfils all the analytical specifications

LYCOAT[®] Regulatory Status

- LYCOAT[®] fulfils the specified tests of modified and pregelatinized starch USP/NF monographs
- LYCOAT[®] fulfils all the analytical specifications of major food or pharmaceutical modified starch monographs
- LYCOAT[®] has food regulatory status
 ✓ E1440 European directive on food additives
 ✓ 21 CFR
- In Japan, LYCOAT[®] is considered as a natural food ingredient
- ➡ EP regulatory status of LYCOAT[™] is under progress (Chemically modified starches)

Summary - LYCOAT[®] in film coating

- Novel aqueous starch-based non-functional polymer
- Quickly and easily soluble/dispersible in cold water
- Excellent film stability
- Can be incorporated at high level in solution

Allows quicker coating and cost-savings

Provides high quality coating (appearance and strength)

• Available in a ready to use form – *ReadiLYCOAT®*

www.roquettepharma.com

www.readilycoat.com

