一致性|叶英分享缓控释等特殊制剂案例

一致性评价可以分成两种类型,一类是基药目录中 2007 年 10 月 1 日前批准上市需在 2018 年底前完成一致性评价的;另一类是自首家品种通过一致性评价后,其他企业 3 年内未完成一致性评价不予再注册。

需开展一致性评价的品种中,涉及不少缓控释制剂、肠溶制剂、极低剂量缓释片等特殊制剂 产品,相对而言,这类品种一致性评价更具挑战性。同写意论坛 44 期活动,力品药业(厦 门)有限公司董事长**叶英**博士对此进行了案例分享。

整理 | 林小洁 科贝源北京生物医药科技有限公司

一致性评价的缓控释品种

↓有多少缓控制剂?

	缓释制剂	肠溶制剂
类型一	19 种	14 种
类型二	157 种	97 种

↓ 2018 年底前须完成评价的缓释品种

序号	药品通用名称	规格	备注
210	吲达帕胺缓释片	1.5mg	
240	盐酸坦洛新缓释胶囊	0.2mg	
288	盐酸坦索罗辛缓释胶囊	0.2mg	大百元十八人
234	硝苯地平缓释片(Ⅱ)	20mg; 30mg	有原研药6个
251	硫酸吗啡缓释片	己批准的所有规格	
284	硝苯地平缓释片	20mg; 30mg	
232	双氯芬酸钠缓释片	50mg; 100mg	
257	双氯芬酸钠缓释片(I)	50mg; 100mg	今日,州刘禹亚 <i>和户</i> /
283	双氯芬酸钠缓释片(V)	50mg; 100mg	参比制剂需要确定/ 无参比制剂
186	氯化钾缓释片	0.5g	儿参น刺剂
238	盐酸吗啡缓释片	己批准的所有规格	

87	茶碱缓释片	0. 1g	
129	布洛芬缓释胶囊	0. 3g	
215	布洛芬缓释片	0. 3g	
217	硫酸亚铁缓释片	0. 45g	
175	氨茶碱缓释片	0.1g	
201	双氯芬酸钠缓释胶囊	50mg; 100mg	
256	双氯芬酸钠缓释胶囊 I	50mg; 100mg	
282	双氯芬酸钠缓释胶囊III	50mg; 100mg	

↓ 2018 年底前须完成评价的肠溶品种

序号	药品通用名称	规格	备注
5	红霉素肠溶片	0. 125g; 0. 25g	
133	红霉素肠溶胶囊	0.125g; 0.25g	
167	奥美拉唑肠溶片	10mg; 20mg	有原研药 5 个
223	奥美拉唑钠肠溶片	10mg; 20mg	
59	奥美拉唑肠溶胶囊	10mg; 20mg	
22	双氯芬酸钠肠溶片	25mg	
170	柳氮磺吡啶肠溶片	0. 25g	
60	呋喃妥因肠溶片	50mg	
122	对氨基水杨酸钠肠溶片	0.5g	
133	红霉素肠溶胶囊	100mg; 200mg	参比制剂需要确定/无
183	地红霉素肠溶胶囊	0. 125g; 0. 25g	参比制剂
180	盐酸二甲双胍肠溶片	0.25g; 0.5g	
222	盐酸二甲双胍肠溶胶囊	0. 25g; 0. 5g	
15	阿司匹林肠溶片	0.3g	
168	地红霉素肠溶片	0.125g; 0.25g	

极低剂量缓释片一致性评价中的技术要点

定义——

低剂量制剂:

- 无官方定义
- 单剂量标示量<25mg
- 主药含量<25%的片剂、硬胶囊剂

极低剂量制剂:

- BP, "微剂量"
- 单剂量标示量<2mg
- 主药含量<2%

↓下面的品种就是单剂量规格为微克级别的制剂

序号	药物	剂量	类别
1	阿普唑仑	250-500 微克	抗焦虑
2	甲硝阿托品	200 -600 微克	抗胆碱
3	盐酸丁丙诺啡	400 微克	麻醉性镇痛药
4	盐酸可乐定	50-100 微克	抗高血压
5	洋地黄毒苷	50-200 微克	强心苷
6	醋酸氟氢可的松	50-300 微克	盐皮质激素
7	甲基麦角新碱	250-500 微克	子宫收缩剂
8	炔诺酮	150-300 微克	黄体素
9	甲状腺素钠	50-300 微克	拟甲状腺素

这类药物在开发过程中,要注意哪些问题呢?它的开发思路又是如何?

作为一个仿制药,自然就有原研药(参比制剂),所以开发的第一步就是对它进行全面解析,深度研究,包括:参比制剂的说明书、审评汇总、专利;原料药特性方面有晶型、粒径和分布、pKa、logP、溶解度;制剂的特性,如主要辅料、处方工艺、多介质溶出谱等。

解析过程中的反向工程对仿制药绝对有用。反向工程将原料药、参比制剂、申报产品做对比,尝试不同粗、细的颗粒,通过这些数据反推原料等。我们这个项目做反向工程的时候,做了 X 射线衍射仪、DSC、激光粒度分析仪、Kinexus 高级旋转流变仪等。

把原研药分析清楚后,才可以开始下一步。

案例分享 极低剂量 LP002 (100 μ g)缓释片

这个药物属于极低剂量药物,只有 0.1 毫升,每日服用 1 片,而后 24 小时内仅释放 0.1 毫克——可见的确难度比较大。

首先是制粒。这个药物的专利中写的只有两个,一是干法制粒,一是湿法制粒。 具体是改良的还是普通的,并没有写。作为一个仿制药企业,也可以去做研发, 但一般没有那么多时间。因此,只能去比较干法制粒和湿法制粒,哪个比较合适, 能做下来。

此外,混合度肯定是关键——这么低的剂量在辅料中,还需要 24 小时缓慢释放出来,每一个点都要做得和原研一样,混合不均匀肯定没办法做到。混合要均匀,并不是说需要买多么高档的混合剂,而是细致的分析与思考。

辅料选择及用量:

- 包括辅料的粒度、水分、分散均匀性,制颗粒的大小、分散均匀性;
- 辅料加入顺序;
- 混合方式;
- 混合设备;
- 混合时间。

根据这个药品的特点,我们将原料微粉化以增加与辅料的接触面,选择合适的窄小的原料、辅料粒度范围,选择与原料组分密度相似的辅料,使用溶剂分散法,通过两次制粒、多次制粒减少粉末粒度差异,再进行等量递增混合,并使用多功能设备,减少混合物的周转次数。一种不行就试另一种,试到做出来为止。

这些都做好后,就到了最关键的溶出度。在 4 种介质中对比产品与原研药的释放曲线,结果都是在 70%以上。看到这个数据后,我们还是比较有信心,觉得还可以再往前推一点。

然后,我们在比格犬做了药动学的比较。通过这个试验可以看出,缓控释是没有问题的。

↓ 动物体内与参比制剂药动学比较(比格犬, n=8)

药动学参数	参比制剂 R	LP002 受试制剂 T	药动学参数数值比(T/R×100%)
Cmax (pg/ml)	171. 7 ± 46.0	154. 1 ± 25 . 5	0. 8975

Tmax (h)	3.75±0.89	4. 38±1. 06	1. 168
MRT0-24	5.53 ± 0.65	5.77 ± 0.41	1. 0434
MRT (0-∞)	6. 36±1. 28	6.73±1.31	1. 0587
t1/2 (h)	2.85 ± 1.07	2.78±1.46	0. 9754
C1/F (L/h)	8. 21 ± 1.70	8. 2±1. 1	0. 9988
Vd/F (L)	32.5 ± 8.4	32.9 ± 16.9	1. 0123
AUCO-24 (pg/ml • h)	1183. 3 ± 238.4	1148.8 ± 158.3	0. 9708
AUCO-∞ (pg/ml•h)	1268.2 ± 278.39	1233.9 ± 153.5	0. 973

在这个案例中可以看到,在进行一致性评价时,是需要遵循流程的。总的在做完体外一致性评价后,再考虑体内一致性评价。

在体外一致性评价中,首先是对品种进行评估,包括市场调研、原研(参比制剂)确定、研究方案制定;而后进行体外溶出度的研究,包括溶出度方法开发与验证、溶出曲线对比和相似性分析;最后进行制剂工艺的研究,包括对原研进行解析、处方筛选、工艺优化、放大、转移及验证。

这些都完成了,再进行体内一致性评价。一开始可以先做动物 PK 试验,试验的数据可以为制剂优化、人体 BE 实验提供支持;然后再进行人体 BE 实验。

作为缓控释制剂,比较难的一点,是在制剂工艺这部分。比如说工艺放大,因为 要把它做成微丸,然后再包,包完还要压成片,这个在放大的过程中,每一步都 不容易。

微片缓释胶囊实例

微片,是指特制的压片机冲模压出直径 2~3mm 的微型片。它的临床效果类似微丸,制剂工艺类似片剂。

在质量方面,因为它很小,所以需要控制重量差异、硬度、高度、脆碎度,同时 含量均匀度也是一方面。我们在中控时会给出中控指标,把它一步步控制好。这 些可能和其他制剂有一点不一样。

查阅文献可以发现,微片有两种情况:一种是将微片压成片;另一种是将微片装在胶囊里。我们做的是装在胶囊的这种,一来市面上看到的主要是这种,二来微片再压片可能真的太难了。

微片的应用很多,可以添加少量的缓释材料,做成缓释制剂;可以给微片包肠溶膜衣,做肠溶制剂;把微片和含药粉末混合压片,做速释和缓释微片混合片剂;可以做成胃滞留片,微片体积小、重量轻,飘浮效果更好;还可以做生物粘附片,微片比表面积大,粘附更强。

这次做的微片胶囊项目,其原研药就是通过微片技术决定产品的缓释作用。

我认为在微片技术里,最关键的就是冲头设计,以及微片如何装到胶囊里。其他 各个步骤可能不会有太大差别。

冲头设计非常有讲究:冲针材质要硬度与韧性兼具;冲针环形分布,这样受力更均匀(不均匀的易断,可能断一点点,金属检测都检测不出来)。冲头设计得好,做出来的微片片重硬度一致性高。此外,冲杆和冲帽为组合结合,可以有效防止卡顿现象。

另一个关键技术是充填胶囊,因为这不是按重量来的,而是按照微片的大小,按 粒数算,例如,我做的这个项目就是 42 粒。这个设备是根据微片大小定制了多 微片下料充填装置,使用激光数粒,检测精度高,能准确剔除装量超限的胶囊, 有效提高产能。

总之,缓控制剂错综复杂,一致性评价形势严峻,不同原理缓控制剂的中控参数 考核不同。原研药解析要透彻,反相工程要借助各类表征仪器分析。新制剂、新 剂型、特殊制剂将不断增加,一致性评价更具挑战。